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Analyzing the progression of Alzheimer’s disease (AD) is challenging due to
lacking sensitivity in currently available measures. AD stages are typically
defined based on cognitive cut-offs, but this results in heterogeneous patient
groups. More accurate modeling of the continuous progression of the disease
would enable more accurate patient prognosis. To address these issues, we pro-
pose a new multivariate continuous-time disease progression (MCDP) model.
The model is formulated as a nonlinear mixed-effects model that aligns patients
based on their predicted disease progression along a continuous latent disease
timeline. The model is evaluated using long-term follow-up data from 2152
participants in the Alzheimer’s Disease Neuroimaging Initiative. The MCDP
model was used to simultaneously model three cognitive scales; the Alzheimer’s
Disease Assessment Scale-cognitive subscale, the Mini-Mental State Exami-
nation, and the Clinical Dementia Rating scale—sum of boxes. Compared
with univariate modeling and previously proposed multivariate disease pro-
gression models, the MCDP model showed superior ability to predict future
patient trajectories. Finally, based on the multivariate disease timeline esti-
mated using the MCDP model, the sensitivity of the individual items of the
cognitive scales along the different stages of disease was analyzed. The analy-
sis showed that delayed memory recall items had the highest sensitivity in the
early stages of disease, whereas language and attention items were sensitive later
in disease.
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1 INTRODUCTION

Alzheimer’s disease (AD) is a slowly progressing disease where affected individuals progress from having normal cog-
nition to severe dementia over a period that is typically more than a decade.1 However, lack of sensitivity of currently
available measures and considerable individual differences in disease manifestation make it difficult to accurately stage
patients and predict their future course of disease. The progression of AD is typically evaluated by repeated assessments of
clinical scales measuring cognition or function, for example, the Alzheimer’s Disease Assessment Scale-cognitive subscale
(ADAS-cog).2 However, there has recently been an increasing focus on biomarkers for measuring disease progression,
with a specific focus on measures of amyloid and tau burden and neurodegeneration biomarkers.3,4 While a number of
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these biomarkers have been shown to be of great diagnostic value, their prognostic value compared with clinical scales is
yet to be thoroughly investigated.

The current inability to define patient populations with homogeneous progression patterns makes it particularly dif-
ficult to conduct interventional clinical trials in AD. A heterogeneous trial population will have considerable variation
in the observed patterns of decline due to disease-stage differences, which will in turn reduce power to detect treatment
effects. This is illustrated by a recent power calculation suggesting that to obtain a reasonable power for detecting a treat-
ment effect on cognitive performance in preclinical AD, clinical trials should run for at least 4 years, with a sample size
of approximately 2000 patients per arm.5 For drug development sponsors, such trials would typically not be considered
economically viable. However, there are at least three widely investigated ways to decrease trial durations while retain-
ing power6-11: (1) Use inclusion criteria that reduce heterogeneity of the included patient populations; (2) Develop more
sensitive measures of progression in the early stages of disease; and (3) Identify subpopulations with accelerated disease
progression.

While these strategies have been widely investigated, the analyses often rely on grouping patients into coarse
disease-stage groups (eg, mild cognitive impairment, mild/moderate/severe AD dementia) and oversimplistic statistical
models. For example, a commonly used procedure for identifying fast-progressing patients is to predict rate of change on
cognitive measures using random slope models. The patients with the steepest predicted slopes are identified as the fast
progressors.12,13 However, because the rate of cognitive decline is typically increasing as AD progresses, this approach
tends to identify patients that are late in the disease. Even, when adjusting analyses for baseline cognition, this bias persists
since cognitive scores are not only affected by disease stage but also by factors such as cognitive reserve.14 Consequently,
the patients that are later in disease (with an associated faster rate of decline) but better able to compensate on cogni-
tive tests will look like the fastest progressors. This may explain why longer education and occupational complexity have
consistently been found to be associated with an increased rate of cognitive decline in AD.15

There exist a range of models for analyzing disease progression in AD. Continuous-time linear mixed-effects mod-
els provide a simple framework for modeling progression, but they will generally not enable separation of (horizontal)
disease-stage effects from (vertical) additive effects since everything is modeled on an additive scale. The mixed-model for
repeated measures16 treats time as a categorical variable which enables the approximation of any nonlinear time pattern.
However, since time is considered categorical it is difficult to model horizontal disease-stage effects, as any systematic
variation from the response is modeled as a vertical additive effect.

An early example of explicitly modeling patient-level disease stage is that provided by Jedynak et al17 Donohue
et al18 developed a similar modeling approach, the so-called growth models by alternating conditional expectation
(GRACE) framework. More recently, Li et al19 developed a class of latent-time joint mixed-effects models (LTJMM) for
modeling nonlinear disease progression on multiple outcomes. In LTJMM, disease stage differences are modeled by
a subject-specific random time shift. The nonlinear progression curve is achieved by nonlinear transformation of out-
comes prior to analysis, and potentially the use of a link function. These transformed outcomes are modeled using a
linear mixed-effects model and the identifiability of the latent time shifts is achieved by assuming that disease stage
is the only consistent time-invariant patient-level effect across outcomes. Another recent disease progression modeling
framework has been proposed by Raket.20 This framework considers the same problem but differ in some key model-
ing choices. Most notably, the model uses nontransformed data and directly models the nonlinear disease progression
curve that relates the observed outcomes on their original scale to the latent disease time. This enables flexible and
interpretable noise models to be specified and allow separation of time-invariant effects of disease stage from other addi-
tive effects. Furthermore, the framework allows modeling of covariate effects on both disease stage, rate of decline and
deviation from the mean. However, the models proposed by Raket do not allow simultaneous modeling of multiple
outcomes.

This article extends the univariate framework proposed by Raket to a new multivariate continuous-time disease
progression (MCDP) model that can handle multivariate outcomes on their original scales. This enables the use of infor-
mation from several cognitive measures that may differ in sensitivity across disease stages. The multivariate analyses
presented here are based on three cognitive measures ADAS-cog, Mini-Mental State Examination (MMSE) 10, and the
Clinical Dementia Rating scale—sum of boxes (CDR-SB).11 The MCDP model was fitted to data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and compared with corresponding univariate models to investigate the value of
simultaneous using information from multiple cognitive measures. The MCDP model was subsequently compared with
multivariate modeling results obtained from GRACE and LTJMM in both a prediction study based on ADNI data and in
a simulation study. Finally, based on the predicted patient staging results from the MCDP model, the temporal sensitivity
patterns of items from the three cognitive measures were compared along the common continuous disease timeline. This
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common timescale was used to estimate the continuous-time evolution of each individual item enabling comparison of
item sensitivity across different cognitive assessments.

The rest of the article is structured as follows. Section 2 includes a description of the analyzed data; a presentation of
the modeling framework; and a presentation of the methodology used for validating and comparing model results. The
results of the multivariate analysis of cognitive measures and item sensitivities are described in Section 3, followed by a
discussion of the results in Section 4.

2 METHODS

2.1 Data

Data from the ADNI database (adni.loni.usc.edu) were used for the analyses presented in this article. The database holds
data from patients with varying degrees of cognitive impairment, with follow-up times of more than 10 years. The anal-
yses are based on three cognitive scales, ADAS-cog, MMSE, and CDR-SB. ADAS-cog ranges from 0 to 85 points with
higher values indicating more severe impairment. The MMSE score ranges from 0 to 30 points with lower values imply-
ing more severe impairment. The CDR-SB score ranges from 0 to 18 points with 0 indicating no dementia and 18 severe
dementia.

To be included in the analysis, patients were required to have a valid disease severity status at baseline in one of
the five categories; cognitively normal, significant memory concern, mild cognitively impaired (early), mild cognitively
impaired (late), or dementia. Furthermore, included patients were required to have had at least one measurement of one
of the three cognitive scales. These inclusion criteria were fulfilled by 2152 of 2175 participants. Among the 31 excluded
participants, 23 had a missing baseline disease severity status and the remaining eight did not have any valid observations
of the cognitive scales. The 2152 included participants had a total of 10 160 visits with valid cognitive assessments. All
models were fitted on a randomly selected subset of 80% of participants (1722 participants, 8044 visits). The remaining
20% of participants (430 participants, 2116 visits) were held out for validation.

2.2 Disease progression modeling

Assume that subject i has mi visits at time points ti1 < … < timi . Both number and timing of visits can vary across subjects.
Let yij denote the observed outcome from subject i at time tij.

We consider a univariate disease progression model of the form

yij = 𝜇(tij + xT
ij𝛽 + zi) + vi + 𝜀ij, j = 1, … ,mi, i = 1, … ,n, (1)

where 𝜇 denotes a function modeling the mean progression in the total population and the subject’s variation
from the mean curve is split into two effects, a random (vertical) additive effect vi + 𝜀ij and a (horizontal) time shift
xT

ij𝛽 + zi. The random vertical shift consists of a time-invariant shift in cognitive scores between individuals vi and mea-
surement error term 𝜀ij. The horizontal shift consists of a term modeling fixed effects of covariates xT

ij𝛽 that describe
differences in disease stage and a term modeling unobserved random variation in disease stage zi. We assume that
the two random effects, zi and vi, are independent of each other, and that zi ∼ 𝒩 (0, 𝜏2), vi ∼ 𝒩 (0, 𝛾2). Moreover, the
measurement noise terms are assumed to be identically distributed and independent of all other effects 𝜀ij ∼ 𝒩 (0, 𝜎2).
The vector xij consist of observations from p potentially time-varying predictors for the ith patient with associated
coefficients 𝛽. After fitting the model, the timescale formed by the shifted time points tij + xT

ij𝛽 + zi form a global
timescale for disease progression in the population. The different components of the nonlinear model are visualised in
Figure 1 with the three columns illustrating how the model takes data defined on a timescale measured since base-
line (left) and models the individual trajectories defined using a latent disease time that forms the disease continuum
(right). The middle column shows the fixed-effect staging along the disease continuum modeled by baseline disease
severity group.

There exist many approaches for modeling the mean progression curve 𝜇 and each will have its strengths and weak-
nesses. For example, modeling 𝜇 using basis function approaches, such as splines, would allow approximation of very
general nonlinear progression patterns, but could also lead to overfitting. In this work, we focus on parametric mean
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F I G U R E 1 Illustration of the different components of the univariate disease progression model fitted on ADAS-cog measurements.
The top row shows the observed trajectories while the bottom row shows the model’s predicted subject trajectories t →𝜇(t)+ vi across
different timescales t. Left column: Data plotted against time since study baseline. Middle column: Data plotted against group-adjusted
disease time tij + xT

ij𝛽. Right column: Data plotted against predicted disease time tij + xT
ij𝛽 + zi. In the two latter columns, time 0 of the latent

disease timescale corresponds to the average latent time of the cognitively normal group at baseline [Color figure can be viewed at
wileyonlinelibrary.com]

curves because they allow more direct control of the shape of the mean function (eg, monotonicity constraints) and easier
interpretation of parameters. We focus on exponential models for the mean curve of the form

𝜇(t) = l ⋅ exp
(

t
exp(g)

)
+ v, (2)

where the parameter g describes the scaling of time, v describes the left asymptote, which for cognitive outcomes can be
interpreted as the mean score of cognitively normal individuals, and the parameter l describes mean deviation from v at
time t = 0. The choice of an exponential mean curve is based on the monotonic nature of the cognitive decline in AD
where the rate of deterioration is typically increasing throughout the disease. In addition, this parametric representation
with only three free parameters is considerably simpler compared with other choices such as the generalized logistic
function.

The model described above has a single response variable yij at every visit. However, much information is typically
collected at a single visit, and since the different outcomes may measure different aspects of the disease, a multivariate
model may be superior to a univariate model. For example, if one cognitive measure is sensitive early in disease while
another is sensitive in the later stages of the disease, individual models for these measures may not agree on the predicted
disease stages of patients and it will not be possible to compare the mean progression between the cognitive measures. This
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problem can be overcome by a multivariate model for a combination of measures that define a common latent timescale
across outcomes. This would enable the model to take advantage of different levels of sensitivity of the measures along
the disease timeline and make a direct comparison of measures possible.

We propose the MCDP model as a multivariate extension of the model given in Equation (1). Let k = 1, … , K be the
index for the K outcomes at a given visit. The response yijk is modeled as

yijk = 𝜇k(tij + xT
ij𝛽 + zi) + vik + 𝜀ijk, (3)

where zi ∼ 𝒩 (0, 𝜏2), vi = (vi1 · · · viK) ∼ 𝒩 (0,Γ) with an unknown covariance matrix Γ modeling the vertical correlation
across time-invariant deviations in cognitive scores, and 𝜺ij ∼ 𝒩 (0, diag(𝝈2)) where 𝝈

2 = (𝜎2
1 … 𝜎2

K). Independence is
assumed between zi and vi. Note that all terms besides the latent time scale, tij + xT

ij𝛽 + zi, depend on k.
The MCDP model and its univariate counterparts include fixed effects of the baseline disease severity status (Sig-

nificant Memory Concern, Early Mild Cognitively Impaired, Late Mild Cognitively Impaired, and Dementia) on the
time-shift. The corresponding parameter estimates describe the differences in disease stage of the baseline severity status
groups over the continuous latent time scale. To avoid overparameterization, the time differences are modeled relative to
the Cognitively Normal group at baseline. Resultingly, time 0 of the latent disease timescale corresponds to the average
state of the cognitively normal participants at baseline. We have made both the univariate and multivariate models pre-
sented in Section 3 available in the progmod R package20 which builds on the maximum likelihood estimation procedures
in the nlme-package.21 Example data and code for fitting both univariate and multivariate disease progression models are
available in the package documentation. The progmod package also allows fitting of models with other choices of mean
curves than the exponential functions considered here. All analyses were done using R 4.0.2.

2.3 Validation

Since multiple cognitive scales are considered simultaneously, the MCDP model has access to more information to esti-
mate the disease timeline and model the variability in data compared with corresponding univariate models. To test
whether this additional information resulted in a better fit of data, the predictive performance of the models was com-
pared. The performance of the MCDP model was compared against its univariate counterparts in terms of predicting
postbaseline trajectories of the three cognitive scales using only the baseline assessment. The performance was assessed
in both the training set and the held-out validation set. Predictions were only done for patients with nonmissing base-
line assessments. The MCDP predictions were the maximum-a-posteriori prediction of the trained model based on each
individual’s baseline scores and baseline disease severity status. First, the subject-specific random vertical and horizon-
tal shifts were predicted by optimizing the conditional posterior distribution of shifts given the baseline measures, and
these were then used to predict future trajectories. Since the model specification makes it possible to predict values that
exceed the limits of the cognitive scales, the predictions were censored to the boundary values of the cognitive scores if
this occurred. The prediction quality was analyzed via the mean squared error (MSE) and median average deviation for
both training and test data.

2.4 Comparison to other multivariate models

The MCDP model was compared with GRACE18 and LTJMM22 on the three cognitive outcome measures described above
as well as on simulated data. The modeling choices for GRACE and LTJMM and the simulation study are described in
detail below.

While being theoretically feasible, the software packages for GRACE and LTJMM did not allow prediction for
unseen individuals. Therefore, the baseline observations from the test set were included in the training set for all
models. These additional baseline observations were not expected to affect the model fits in any material way since
the individual random effects and their associated variance parameters can only be separated by means of longitudi-
nal trajectories, and thus the contribution of single observation points to the likelihood or posterior function would
be very limited. Furthermore, GRACE did not support participants with completely missing data on one outcome.
Therefore, individuals in the test set were further required to have complete data on all three cognitive measures at
baseline.
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2.4.1 Growth models by alternating conditional expectation

All outcomes were independently transformed to quantiles using a weighted percentile transformation adjusting for
baseline disease severity status.18 A nonlinear model of the form

ỹijk = gk(tij + zi) + α1iktij + α0ik + 𝜀ijk

was fitted to the transformed data ỹijk using the alternating conditional expectation approach, where zi ∼ 𝒩 (0, 𝜎2
z )denotes

the random subject-level time shift that is assumed to be independent of the random slope and intercept terms (α1ikα0ik) ∼
𝒩 (0,Σj) and the measurement noise 𝜀ijk ∼ 𝒩 (0, 𝜎2

k). The mean progression curves gk were modeled using monotone
spline functions with 9 degrees of freedom (standard setting).

2.4.2 Latent-time joint mixed-effects models

All outcomes were independently transformed to quantiles using a weighted quantile transformation. Subsequently, the
quantiles were transformed using the inverse Gaussian quantile function.19 These transformed outcomes were modeled
as Gaussian with identity link. For comparability to the MCDP model, the model included adjustment for baseline disease
severity status. The transformed outcomes ỹijk were modeled as

ỹijk = xT
i 𝛽k + γk(tij + zi) + α1iktij + α0ik + 𝜀ijk

where zi ∼ 𝒩 (0, 𝜎2
z ) denotes the random subject-level time shift, that is assumed to be independent of the random slope

and intercept terms (α1i1, α0i1, α1i2, α0i2, α1i3, α0i3) ∼ 𝒩 (0,Σ) and the measurement noise 𝜀ijk ∼ 𝒩 (0, 𝜎2
k). The term xT

i 𝛽k
models the effect of the baseline disease severity status of subject i on the transformed outcome and 𝛾k ∈R the population
slope. For all model parameters, the standard choice of weakly informative priors was used and time was modeled as
years since baseline.19

To compare the staging of patients with the MCDP model, a subject-specific time shift that was independent of out-
come and visit was defined by reparameterization of the model. The reparameterization defined the subjective time shift
si as the average subject-level contribution of the fixed effects across outcomes plus the random subject-level time shift

si = zi +
1
K

3∑
k=1

𝛾−1
k xT

i 𝛽k.

2.4.3 Simulation study

To evaluate the models’ abilities to recover subject-level shifts and thus accurately stage patients along the disease con-
tinuum, data were simulated under the maximum likelihood estimates of the MCDP models for the ADNI data. Each
simulation included 500 patients from the mild cognitively impaired (late) group that had visits every 6 months for 4 years.
Since only one baseline group was included, the effects related to baseline group was removed from the models.

The univariate disease progression models, the MCDP model, GRACE and LTJMM were compared in terms of
the root-mean-square errors, median absolute deviations, and Spearman correlations between predicted and true
subject-level shifts in 1000 simulated datasets.

2.5 Item analysis

The estimated disease timeline from the MCDP model (3) was used to investigate differences in sensitivity of the individual
items of ADAS-cog, MMSE, and CDR-SB at different disease stages. This was done to identify the most sensitive items in
different stages of the disease. Such knowledge of item sensitivity can potentially be used to develop new strategies for
evaluating patient cognition in clinical trials. In the analyses, items were categorized into the domains Memory, Language,
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Attention, Visuo-Spatial, Motor, Executive Functioning, and Social Cognition. Many items measure ability in multiple
areas simultaneously, for example, Memory and Language, so the classification was done by a clinical outcome assessment
expert who gave the most weight to the primary measure of the item. Notice also that the chosen subgroups are a coarse
classification of items which means that for example, the Memory group consists of items in all subcategories related to
memory, for example, immediate and delayed memory tasks.

The analysis of items was based on ordinal models.23 We used a proportional odds model assuming equality of odds
ratio across item levels over a time unit. Such an assumption results in simpler interpretations of the model but it may
not always be able to represent the dynamics of the observed data. Alternatively, item level specific odds ratios could be
modeled, for example, by assuming monotonic increase of odds ratios for increasing item levels.24 Due to the simpler inter-
pretation and visualization of the model, the proportional odds model was selected for the present analysis. For each level j
of item Xl, we fitted two ordinal models that estimated the probability of scoring j or lower at the continuous disease stage t,

logit(P(Xl ≤ j)) = θlj − αlt

and

logit(P(Xl ≤ j)) = θlj − αlt − βlt3.

The latter model allows more flexible modeling of the developing sensitivity of items along the disease timeline. The
cubic term was included because of its monotonicity. For each item, the model with the lowest Bayesian information
criterion was chosen.

For two-level items, the ordinal model reduces to logistic regression. Based on the estimated parameters; the thresholds
𝛉l = {θlj}J

j=1, and slopes αl and βl, a measure of sensitivity of each item at disease time t can be defined by computing the
probability of Xl being less than or equal to j. Similar types of analyses for sensitivity of items of cognitive tests have been
considered previously.8,9 Commonly the sensitivities of items are analyzed over the range of patients’ cognitive abilities,
reflecting a population distribution instead of an underlying measure of progression. The difference to the presented
analysis is that the sensitivity is measured over a natural timescale of disease progression obtained from the MCDP model.
This allows evaluation of the sensitivity of items along the disease timeline. The ordinal models were fitted separately to
each item, but the joint disease progression timescale was the same across models.

To visually compare the sensitivity of each item, we computed the intervals of time-points for which P(Xl > j) was
within the interval [0.1,0.5], that is, the probability of being at a level above j is between 10% and 50%. Sensitive items will
have a narrow time interval for which P(Xl > j) is within [0.1,0.5], as patients are more prone to rapidly jump to higher
levels of the specific item.

The ordinal models were fitted using the R function clm from the ordinal package.25

3 RESULTS

3.1 Validation

To investigate the value of multivariate modeling, we compared the MCDP model of the three cognitive scales to corre-
sponding univariate models. Figure 2 shows the predicted time shifts for each patient (random plus fixed effects) in the
training set from the three univariate models of the cognitive scales plotted against each other. While the predicted disease
times are strongly correlated (all Spearman correlations> 0.7) there are noticeable deviations, some of which amount to
several years difference in predicted disease stage. In particular, there are differences for the cognitively normal and sig-
nificant memory concern groups between ADAS-cog and the two other endpoints. The reason for this is that CDR-SB
and MMSE are at around their ceilings (0 and 30, respectively) for most of these individuals throughout the follow-up
period, and thus there is only very limited information available for staging individuals for these measures in the nonim-
paired stages. A multivariate model could potentially utilize the different sensitivities in scores across scales to improve
the predicted disease timescale.

The MCDP model presented in Section 2.2 was fitted simultaneously to assessments of ADAS-cog, MMSE, and
CDR-SB in the training data. The estimated mean curve projected on to each dimension of the cognitive measures are
shown in Figure 3.
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F I G U R E 2 Comparison of the predicted individual time shifts from each of the three univariate models [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 3 Mean curves for the three cognitive scales simultaneously estimated using the multivariate continuous-time disease
progression (MCDP) model. The predicted disease month time scale is the time scale predicted by the model that is adjusted for group-level
(fixed) and subject-level (random) differences in disease stage [Color figure can be viewed at wileyonlinelibrary.com]

The estimated correlations between the outcome-specific vertical shifts vik are given in Table 1. ADAS-cog
and MMSE had a strong correlation of −0.7 while correlations to CDR-SB were both around 0.4 in mag-
nitude. The SD 𝜏 for the random time shift zi was estimated to 41.1 months, suggesting considerable
disease-stage variation within the baseline disease severity groups. The Spearman correlations between the pre-
dicted disease time for the MCDP model against the predictions of each of the univariate models were all
above 0.8.

The MCDP model fit was compared with each of the three univariate models described in Section 2.3. Patient-level
predictions were made based on the baseline disease severity status and cognitive measures at baseline. The MSEs and
MADs for the univariate models and MCDP model on each cognitive scale are given in Table 2. In the test set, the MCDP
model had significantly lower MSE of postbaseline predictions of patient trajectories on ADAS-cog and MMSE (both

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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T A B L E 1 Estimated correlations between the outcome specific
vertical shift effects for the MCDP model

ADAS-cog CDR-SB MMSE

ADAS-cog 1

CDR-SB 0.394 1

MMSE −0.733 −0.473 1

Abbreviations: MCDP, multivariate continuous-time disease
progression; MMSE, Mini-Mental State Examination.

T A B L E 2 Mean squared errors and median absolute deviations of postbaseline predictions of univariate disease
progression models and the MCDP model

Mean squared error Median absolute deviation

ADAS-cog CDR-SB MMSE ADAS-cog CDR-SB MMSE

TRAIN Univariate 142.9 7.82 23.2 4.03 0.63 1.40

MCDP 106.9 6.96 16.9 3.87 0.69 1.32

TEST Univariate 129.2 8.20 20.2 3.95 0.59 1.41

MCDP 100.3 7.02 16.5 3.85 0.68 1.35

Note: Boldface indicates best performance.
Abbreviations: GRACE, growth models by alternating conditional expectation; LTJMM, latent-time joint mixed-effects models; MCDP,
multivariate continuous-time disease progression; MMSE, Mini-Mental State Examination.

P < .001, paired Wilcoxon tests). There was no significant difference in the postbaseline predictions on CDR-SB (P = .41,
paired Wilcoxon test).

3.2 Comparison to other multivariate models

LTJMM, GRACE, and the MCDP model were all fitted on the joint dataset consisting of the training set and the base-
line observations from the test set. There were big differences in runtimes of the algorithms. The MCDP model required
approximately 2 minutes for convergence, GRACE ran for approximately 15 minutes and LTJMM ran for approxi-
mately 12 hours per chain. Figure 4 show the fitted models on each outcome along with the estimated population mean
progression curves.

Sensitivity analyses that excluded the test set baseline observations confirmed that inclusion of additional baseline
observations had no relevant impact on the fits. Pearson correlations between model residuals and between predicted
random time shifts for the individuals in the training set were all between 0.99 and 1.00 for the three multivariate
models.

The models were compared based on their predictive accuracy of postbaseline patient trajectories on the three cogni-
tive scales. The predictive performances of the models are given in Table 3 which shows that the MCDP produces superior
prediction results to the other models across all three endpoints (all P < .0001, paired Wilcoxon tests).

In the simulation study, the MCDP model consistently produced more accurate patient staging than LTJMM
and GRACE with an average Spearman correlation across simulations of 0.93 compared with 0.52 and 0.83.
The full results are shown in Figure 5. Interestingly, the three univariate models all performed better than
GRACE and LTJMM with the model using ADAS-cog performing best followed by the CDR-SB model and the
MMSE model.

3.3 Scale and item sensitivities

Figure 6 shows the three projected normalized mean curves of ADAS-cog, MMSE (reversed for comparison), and CDR-SB
estimated with the MCDP model. Due to differences in range and variation of the cognitive scores, the mean curves and
their derivatives were divided by the estimated SD of the measurement noise in each dimension of the MCDP model.
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F I G U R E 4 Comparison of estimated mean curves and predicted patient staging across models. For better comparison, the GRACE and
LTJMM results have been shifted such that time zero corresponds to the average predicted disease month at baseline for Cognitively normal
individuals. For LTJMM, the slight residual variation from the intercepts of the baseline disease severity groups is not shown. GRACE,
growth models by alternating conditional expectation; LTJMM, latent-time joint mixed-effects models [Color figure can be viewed at
wileyonlinelibrary.com]

In addition, the baseline level was subtracted from the mean curves to make a better comparison of the evolution of
curves. From the plot of the absolute derivatives, Figure 5 (right), it is seen that ADAS-cog and CDR-SB have similar early
increases on the predicted disease timescale, while MMSE has a steeper increase in the later stages of the disease. This
suggests that ADAS-cog and CDR-SB are more sensitive measures for detecting changes early in the disease, while MMSE
becomes the most sensitive of the three later in the disease.

Based on the predicted disease month for each subject obtained from the MCDP model, we compared the sensitivity
of different items included in ADAS-cog, MMSE, and CDR. The aim was to identify the items with the steepest increase at

http://wileyonlinelibrary.com
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T A B L E 3 Mean squared errors and median absolute deviations of postbaseline predictions on the test set

Mean squared error Median absolute deviation

ADAS-cog CDR-SB MMSE ADAS-cog CDR-SB MMSE

GRACE 114.0 12.5 24.1 4.28 0.877 1.53

LTJMM 148.7 8.17 18.5 7.78 1.48 2.48

MCDP 103.4 7.18 17.1 3.83 0.667 1.34

Note: Boldface indicates best performance.
Abbreviations: GRACE, growth models by alternating conditional expectation; LTJMM, latent-time joint mixed-effects models; MCDP,
multivariate continuous-time disease progression; MMSE, Mini-Mental State Examination.

F I G U R E 5 Density plots of the root-mean-square errors, median absolute errors, and Spearman correlations between the true and
predicted shifts for univariate disease progression models, MCDP, LTJMM, and GRACE across 1000 simulations. GRACE, growth models by
alternating conditional expectation; MCDP, multivariate continuous-time disease progression; LTJMM, latent-time joint mixed-effects
models [Color figure can be viewed at wileyonlinelibrary.com]

different time intervals of the predicted disease timeline to better understand the continuous evolution of patient symp-
toms and aid the development of new and more sensitive cognitive assessments. Two item scores from each cognitive
outcome measure are plotted against predicted disease month and shown in Figure 7. As can be seen from the figure, some
items show a clearer evolution over the predicted disease timescale than others and would hence be more informative for
describing the degree of cognitive impairment of a subject.

To analyse differences in sensitivity of items, we fitted ordinal models to each item of the three cognitive scales as
described in Section 2.5. Figures 8 and 9 show the results of the ordinal analysis for all three cognitive scores. Items

http://wileyonlinelibrary.com
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F I G U R E 6 Comparison of normalized mean curves (left) and their corresponding absolute derivatives (right). The curves were
normalized with the estimated SD of the measurement noise of each cognitive measure, and the mean curves were shifted vertically to have a
common starting value at zero [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 Examples of individual item score trajectories plotted against predicted disease month found with the multivariate
continuous-time disease progression (MCDP) model [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


KÜHNEL et al. 13

F I G U R E 8 Sensitivity of ADAS-cog and CDR items across the predicted disease time. The visualized intervals for sensitivity
comparison of items is based on the timepoints for which the probability of belonging to a level greater than the current one is between 10%
and 50%. The lines within intervals represent the 30% threshold. Narrow time intervals suggest higher sensitivity of items while broad
intervals suggest less information for predicting cognitive severity of patients [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 Sensitivity of Mini-Mental State Examination (MMSE) items across the predicted disease time. The visualized intervals for
sensitivity comparison of items is based on the timepoints for which the probability of answering incorrect is within 10% to 50%. All items are
for the MMSE score. Narrow time intervals suggest higher sensitivity of items while broad intervals suggest less information for predicting
cognitive severity of patients

http://wileyonlinelibrary.com
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with narrow intervals at the beginning of the predicted timeline would be good options to include in an instrument for
measuring progression in the early stages of AD, while wide-banded items that span long time intervals late in the disease
would be less informative. The first item of the ADAS-cog, Word Recall, was omitted from the analysis since a subset of
the scores were measured as an average of nonrecalled words over three-word lists while others only used a single word
list.

We found that the items in the Memory domain were the most sensitive in the early stages of the disease. The most
sensitive memory items highlighted by the analyses for both MMSE and ADAS-cog were delayed memory recall tests.
These items show an early narrow sensitivity interval in the ordinal analyses. Besides the memory tests, items showing
an early sensitivity include tests of orientation to time and place and tests concerning the comprehension of everyday
activities and social life. In the later stage of the disease, items testing mostly language and attention become sensitive,
while the floor is reached for the memory tests which thus hold little information on the progression in these late stages
of the disease.

4 DISCUSSION

Staging of AD patients is often considered a discrete problem with stages including preclinical AD, mild cognitive impair-
ment, and mild/moderate/severe dementia. The presented MCDP model challenges the discrete representation of the
progression of subjects. Through nonlinear mixed-effects modeling, we demonstrated the possibility of estimating a con-
tinuous trajectory representing the progression of AD and to predict disease stage of individual patients. The MCDP
model was used on data from the ADNI study to simultaneously model the three cognitive scales ADAS-cog, MMSE, and
CDR-SB. The model was shown to align patients along the disease trajectory resulting in a marked decrease in variation
of cognitive measure compared with analysis of the measures using time since study inclusion. Furthermore, it was seen
that patients classified in the same discrete baseline disease severity groups could have substantial differences in predicted
disease stage.

Compared with univariate modeling, the MCDP model was shown to be significantly better in predicting longitudinal
observations on the individual scales of unseen individuals on ADAS-cog and MMSE, while no significant difference in
predictive performance was found on CDR-SB.

The MCDP model was subsequently compared with two other disease progression models: LTJMM and GRACE.
Comparing the predicted staging and estimated mean progression curves for the MCDP model, LTJMM and GRACE
revealed that the models produced substantial differences in the estimated duration of disease and in progression speed.
GRACE found slower disease progression and longer overall disease duration, compared with the MCDP model. LTJMM
was seen to model the main variation in the population by the random vertical intercept and slope, leaving almost no
variation to the disease stage effect. When compared in terms of predictive performance on held-out data, the MCDP
model was shown to be significantly better at predicting future cognitive decline compared with the two other multivariate
models.

Next, the univariate models, the MCDP model, LTJMM, and GRACE were compared in a simulation study to eval-
uate their ability to recover individual patient stages along the disease trajectory. The results showed clearly superior
performance of the MCDP model, but also better performance of the three univariate models compared with LTJMM
and GRACE. The simulation scenario may have favored the MCDP and univariate models because they were all correctly
specified for the data. Simulations under the estimates of LTJMM and GRACE were not considered feasible because both
methods require preprocessing of data including nonlinear transformations (including the rank transform). Thus, there
is no natural way to back-transform such simulated data to the original scales of the cognitive outcomes that the MCDP
model was developed to model. LTJMM and GRACE rely on transformation of data for handling different types of out-
comes, while different outcomes require explicit modeling choices of mean trajectories for MCDP (several such choices
are available in the accompanying progmod R package). As a result, LTJMM and GRACE may be able to model many
different types of data more robustly and with less explicit modeling choices than MCDP. However, the poor performance
of LTJMM suggests that this approach may in general not be very robust.

Taken together, these findings suggest that the progression curves estimated with the MCDP model better represent
the true evolution of cognitive scores in AD compared with the alternative models and that the model is better to predict
individual patient’s disease progression.

With the continuous disease staging predicted by the MCDP model, we finally analyzed individual item sensitivi-
ties along the estimated disease timeline. Items from the three cognitive scales were compared via an ordinal model
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framework describing the probability of staying at an item level. Such multivariate analysis gives a unique possibility
of comparing items across cognitive measures. The ordinal analysis showed that delayed memory items of all cognitive
measures were sensitive early in the disease. In later stages of the disease, items mostly measuring language and atten-
tion difficulties stood out as sensitive, while the memory items had reached their floor. The continuous evolution of item
scores over disease time makes it possible to not only describe which domains are affected first but also when and for how
long into disease a specific item is sensitive.

The developed methodology and studies presented here have some limitations. First, the MCDP model assumes
that missing data are missing at random, which implies that missingness can be fully accounted for by observed data.
This assumption is often violated when working with longitudinal data from elderly individuals, where factors such as
age-related disease and mortality may lead to changing populations over time.26 In AD studies, in particular, individuals
are more likely to drop out as the severity of disease increases.27 This may, in turn, have biased estimates, however, this
effect would most likely be greatest at the late stages of the disease where data is limited. Furthermore, the MCDP model
assumes that all individuals fit on the same trajectory, however, some individuals may never develop AD or develop other
diseases with distinct cognitive trajectories. This leads to the model shifting the cognitively normal individuals who do
not experience pathological ageing further back in predicted disease time as observation time increases. While this should
have limited impact on the overall results, this will weaken the predictive performance of the model when predictions
are made for cognitively normal individuals based on limited data (eg, baseline assessments). This problem can likely be
lessened by including sensitive biomarker outcomes in the modeling, but future work should address this properly by
directly modeling normal cognitive and pathological trajectories and the transitions between the two.
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